
DyNetworkX Documentation
Release 0.1

Makan Arastuie

Mar 13, 2020

Contents

1 Audience 3

2 Python 5

3 Free software 7

4 History 9

5 Documentation 11
5.1 Install . 11
5.2 Tutorial . 11
5.3 Download . 17
5.4 Reference . 17
5.5 Developer Guide . 62
5.6 License . 62
5.7 Need Help? . 63

6 Indices and tables 65

Index 67

i

ii

DyNetworkX Documentation, Release 0.1

DyNetworkX is a Python package for the study of dynamic network analysis (DNA). It is a fork of NetworkX package.
Thus, implementation, documentation and the development of DyNetworkX is heavily influenced by NetworkX.

DyNetworkX provides

• tools for the study of the structure of dynamic networks.

• all dynamic graph types can be converted to one or more of NetworkX graph types, allowing access to a verity
of network algorithms.

Contents 1

https://networkx.github.io/documentation/stable/index.html

DyNetworkX Documentation, Release 0.1

2 Contents

CHAPTER 1

Audience

The audience for DyNetworkX includes mathematicians, physicists, biologists, computer scientists, and social scien-
tists. Overall, everyone interested in analyzing dynamic networks.

3

DyNetworkX Documentation, Release 0.1

4 Chapter 1. Audience

CHAPTER 2

Python

Python is a powerful programming language that allows simple and flexible representations of networks as well as
clear and concise expressions of network algorithms. Python has a vibrant and growing ecosystem of packages that
NetworkX uses to provide more features such as numerical linear algebra and drawing. In order to make the most out
of NetworkX you will want to know how to write basic programs in Python. Among the many guides to Python, we
recommend the Python documentation.

5

https://docs.python.org/3/

DyNetworkX Documentation, Release 0.1

6 Chapter 2. Python

CHAPTER 3

Free software

Released under the 3-Clause BSD license. More information can be found under Licence.

7

DyNetworkX Documentation, Release 0.1

8 Chapter 3. Free software

CHAPTER 4

History

DyNetworkX is developed by IDEAS Lab @ The University of Toledo.

9

DyNetworkX Documentation, Release 0.1

10 Chapter 4. History

CHAPTER 5

Documentation

5.1 Install

Just like NetworkX, DyNetworkX requires Python 3.4, 3.5, or 3.6.

Below we assume you have the default Python environment already configured on your computer and you intend
to install networkx inside of it. If you want to create and work with Python virtual environments, please follow
instructions on venv and virtual environments.

First, make sure you have the latest version of pip (the Python package manager) installed. If you do not, refer to the
Pip documentation and install pip first.

5.1.1 Note

DyNetworkX is not yet available for pip install. If you are interested in this DyNetworkX, contact us from Need
Help? and we will keep you updated.

5.2 Tutorial

This guide can help you start working with IntervalGraph module of DyNetworkX.

Disclaimer: this tutorial, similar to DyNetworkX itself, is heavily influenced by NetworkX’s tutorial. This is done on
purpose, in order to point out the similarities between the two packages.

5.2.1 Creating an interval graph

Create an empty interval graph with no nodes and no edges.

>>> import dynetworkx as dnx
>>> IG = dnx.IntervalGraph()

11

https://docs.python.org/3/library/venv.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/
https://pip.pypa.io/en/stable/installing/

DyNetworkX Documentation, Release 0.1

By definition, an IntervalGraph is a collection of nodes (vertices) along with identified pairs of nodes (called
interval edges, edges, links, etc) each of which is coupled with a given interval. In DyNetworkX, just like NetworkX,
nodes can be any hashable object e.g., a text string, an image, an XML object, another Graph, a customized node
object, etc.

Note: Python’s None object should not be used as a node as it determines whether optional function arguments have
been assigned in many functions.

5.2.2 Nodes

Using DyNetworkX’s IntervalGraph.load_from_txt() method, the graph IG can be grown by importing
an existing network. However, we first look at simple ways to manipulate an interval graph. The simplest form is
adding a single node,

>>> IG.add_node(1)

add a list of nodes,

>>> IG.add_nodes_from([2, 3])

or add any iterable container of nodes. You can also add nodes along with node attributes if your container yields
2-tuples (node, node_attribute_dict). Node attributes are discussed further below.

>>> H = dnx.IntervalGraph()
>>> IG.add_node(H)

Note that interval graph IG now contains interval graph H as a node. This flexibility is very powerful as it allows
graphs of graphs, graphs of files, graphs of functions and much more. It is worth thinking about how to structure your
application so that the nodes are useful entities. Of course you can always use a unique identifier in IG and have a
separate dictionary keyed by identifier to the node information if you prefer.

Note: You should not change the node object if the hash depends on its contents.

5.2.3 Edges

Edges are what make an interval graph possible. Every edge is defined by 2 nodes, the inclusive beginning of the
interval when the edge first appears and its non-inclusive end. Beginning of an interval must be strictly smaller than
its end and both can be of any orderable types.

Note: In this tutotial as well as IntervalGraph documentation, the two terms edge and interval edge are used
interchangeably.

IG can also be grown by adding one edge at a time,

>>> IG.add_edge(1, 2, 1, 4) # n1, n2, beginning, end of the edge interval
>>> ie = (2, 3, 2, 5)
>>> IG.add_edge(*ie) # unpack interval edge tuple*

by adding a list of edges,

12 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

>>> IG.add_edges_from([(1, 2, 2, 6), (1, 3, 6, 9)])

or by adding any ebunch of edges. An ebunch is any iterable container of interval edge-tuples. An interval edge-tuple
is a 4-tuple of nodes and intervals.

Note: In above example it is worth noting that the two added interval edges, (1, 2, 1, 4) and (1, 2, 2, 6)
are two different interval edges, since they exists on different intervals.

If a new interval edge is to be added with nodes that are not currently in the interval graph, nodes will be added
automatically.

There are no complaints when adding existing nodes or edges. As we add new nodes/edges, DyNetworkX quietly
ignores any that are already present.

>>> IG.add_edge(1, 2, 1, 4)
>>> IG.add_node(1)

At this stage the interval graph IG consist of 4 nodes and 4 edges,

>>> IG.number_of_nodes()
4
>>> len(IG.edges())
4

We can examine nodes and edges with two interval graph methods which facilitate reporting: IntervalGraph.
nodes() and IntervalGraph.edges(). These are lists of the nodes and interval edges. They offer a continu-
ally updated read-only view into the graph structure.

>>> IG.nodes()
[1, 2, 3, <dynetworkx.classes.intervalgraph.IntervalGraph object at 0x100000000>]

IG.edges() is an extremely flexible and useful method to query the interval graph for various interval edges. It
returns a list of Interval objects which are in the form Interval(begin, end, (node_1, node_2).

Using this method you have access to 4 constraints in order to restrict your query. u, v, begin and end. Defining any of
them narrows down your query.

>>> IG.edges() # returns a list of all edges
[Interval(6, 9, (1, 3)), Interval(2, 5, (2, 3)), Interval(2, 6, (1, 2)), Interval(1,
→˓4, (1, 2))]
>>> IG.edges(begin=5) # all edges which have an overlapping interval with interval [5,
→˓ end of the interval graph]
[Interval(6, 9, (1, 3)), Interval(2, 6, (1, 2))]
>>> IG.edges(end=3) # all edges which have an overlapping interval with interval
→˓[beginning of the interval graph, 3)
[Interval(2, 5, (2, 3)), Interval(2, 6, (1, 2)), Interval(1, 4, (1, 2))]
>>> IG.edges(u=1, v=2) # all edge between nodes 1 and 2
[Interval(2, 6, (1, 2)), Interval(1, 4, (1, 2))]
>>> IG.edges(1, 2, 5, 6) # all edges between nodes 1 and 2 which have an overlapping
→˓interval with [5, 6)
[Interval(2, 6, (1, 2))]

One can also take advantage of this method to obtain more information such as degree. Since in an interval graph
these parameters change depending on the interval in question, you need to adjust your query.

Accessing degree of a node:

5.2. Tutorial 13

DyNetworkX Documentation, Release 0.1

>>> len(IG.edges(u=1)) # total number of edges associated with node 1 over the entire
→˓interval
3
>>> len(IG.edges(u=1, begin=2, end=4)) # Adding interval restriction
2

Keep in mind that end is non-inclusive. Thus, depening on what time increment you use to define your interval, if
you set end = begin + smallest_increment it will return all the edges which are present at time begin.

>>> len(IG.edges(u=1, begin=5, end=6))
1

If you are using a truly continuous time interval, you can add your machine epsilon to begin to achieve the same
result. As an example:

>>> import numpy as np
>>> eps = np.finfo(np.float64).eps
>>> begin = 5
>>> IG.edges(u=1, begin=begin, end=begin + eps)
[Interval(2, 6, (1, 2))]

As it is shown, IG.edges() is a powerful method to query the network for edges. You can also take advantage of
IntervalGraph.has_node() and IntervalGraph.has_edge() as it is shown below,

>>> IG.has_node(3)
True
>>> 1 in IG # this is equivalent to IG.has_node(1)
True
>>> IG.has_node(5)
False
>>> IG.has_edge(2, 3)
True
>>> IG.has_edge(1, H)
False

Or constraint the begin and/or end of your search:

>>> IG.has_node(3, end=2) # end is non-inclusive
False

>>> IG.has_edge(2, 3, 3, 7) # matching an interval edge with nodes 2 and 3, and
→˓overlapping interval [3, 7)
True
>>> IG.has_edge(2, 3, 3, 7, overlapping=False) # setting overlapping=False, searches
→˓for an exact interval match
False

One can remove nodes and edges from the graph in a similar fashion to adding. by using IntervalGraph.
remove_node() and IntervalGraph.remove_edge(), e.g.

>>> IG.remove_node(H)
[1, 2, 3]
>>> IG.remove_edge(1, 3, 6, 9, overlapping=False)
>>> IG.edges()
[Interval(2, 5, (2, 3)), Interval(2, 6, (1, 2)), Interval(1, 4, (1, 2))]

14 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

5.2.4 What to use as nodes and edges

Just like NetworkX, DyNetworkX does not have a specific type for nodes an edges. This allows you to represent
nodes and edges with any hashable object to add more depth and meanning to your interval graph. The most common
choices are numbers or strings, but a node can be any hashable object (except None), and an edge can be associated
with any object x using IG.add_edge(n1, n2, begin, end, object=x).

As an example, n1 and n2 could be real people’s profile url or a custom python object and x can be another python
object which describes the detail of their contact. This way, you are not bound to only associating weights with the
edges.

Based on the NetworkX’s experience, this is quite useful, but its abuse can lead to unexpected surprises unless one is
familiar with Python.

5.2.5 Adding attributes to graphs, nodes, and edges

Attributes such as weights, labels, colors, or whatever Python object you like, can be attached to graphs, nodes, or
edges.

Each graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the keys must be
hashable). By default these are empty, but attributes can be added or changed using add_edge, add_node.

Graph attributes

Assign graph attributes when creating a new graph,

>>> IG = dnx.IntervalGraph(state='Ohio')
>>> IG.graph
{'state': 'Ohio'}

Or you can modify attributes later,

>>> IG.graph['state'] = 'Michigan'
>>> IG.graph
{'state': 'Michigan'}

There is also an spacial attribute for interval graphs called name. You can either set it just like any other attribute or
you can take advantage of the IG.name property:

>>> IG.name = "USA"
>>> IG.name
USA

Node attributes

Add node attributes using add_node() or add_nodes_from(),

>>> IG.add_node(1, time='5pm', day="Friday") # Adds node 1 and sets its two attributes
>>> IG.add_nodes_from([2, 3], time='2pm') # Adds nodes 2 and 3 and sets both of their
→˓'time' attributes to '2pm'
>>> IG.add_node(1, time='10pm') # Updates node 1's 'time' attribute to '10pm'

Note that you can update a node’s attribute by adding the node and setting a new value for its attribute.

5.2. Tutorial 15

DyNetworkX Documentation, Release 0.1

Edge attributes

Similarly, add/change edge attributes using add_edge() or add_edges_from(),

>>> G.add_edge(1, 2, 4, 6, contact_type='call') # Adds the edge and sets its 'contact_
→˓type' attribute.
>>> G.add_edges_from([(3, 4, 1, 5), (1, 2, 4, 6)], weight=5.8)
>>> G.add_edge(1, 2, 4, 6, weight=6.6) # Updates the weight attribute of the edge.

Note that updating an edge’s attribute is similar to updating nodes’ attributes.

5.2.6 Subgraphs and snapshots

You can create one, or a series of snapshots of, NetworkX Graph or MultiGraph from an interval graph if you wish
to analyze a portion, or your entire interval graph, using well-known static network algorithms that are available in
NetworkX.

Subgraphs

To extract a portion of an interval graph, given an interval, you can utilize IntervalGraph.to_subgraph(),

>>> IG = dnx.IntervalGraph()
>>> IG.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11), (6, 4, 12, 19), (2, 4, 8, 15)])
>>> H = IG.to_subgraph(4, 12)
>>> type(H)
<class 'networkx.classes.graph.Graph'>
>>> list(H.edges(data=True))
[(1, 2, {}), (2, 4, {})]

Note that you can also use IntervalGraph.interval() to get the interval for the entire interval graph, and use
that to convert an interval graph to a NetworkX Graph.

You can also keep the information about each edge’s interval as attributes on the NetworkX’s Graph:

>>> H = G.to_subgraph(4, 12, edge_interval_data=True)
>>> type(H)
<class 'networkx.classes.graph.Graph'>
>>> list(H.edges(data=True))
[(1, 2, {'end': 10, 'begin': 3}), (2, 4, {'end': 15, 'begin': 8})]

Notice that if there are multiple edges available between two nodes, the interval information is going to reflect only
one of the edges. Another option is to retrieve a MultiGraph to lose less information in the conversion process:

>>> M = G.to_subgraph(4, 12, multigraph=True, edge_interval_data=True)
>>> type(M)
<class 'networkx.classes.multigraph.MultiGraph'>
>>> list(M.edges(data=True))
[(1, 2, {'end': 10, 'begin': 3}), (2, 4, {'end': 11, 'begin': 1}), (2, 4, {'end': 15,
→˓'begin': 8})]

Snapshots

A more traditional method of analyzing continuous dynamic networks has been dividing the network into a series
of fixed-interval snapshots. Although some information will be lost in the conversion due to the classic limitations

16 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

of representing a continuous network in a discrete format, you will gain access to numerous well-defined algorithms
which do not exist for continuous networks.

To do so, you can simply use IntervalGraph.to_snapshots() and set the number of snapshots you wish to
divided the network into:

>>> S, l = G.to_snapshots(2, edge_interval_data=True, return_length=True)
>>> S # a list of NetworkX Graphs
[<networkx.classes.graph.Graph object at 0x100000>, <networkx.classes.graph.Graph
→˓object at 0x150d00>]
>>> l # length of the interval of a single snapshot
9.0
>>> for g in S:
>>> ... g.edges(data=True))
[(1, 2, {'begin': 3, 'end': 10}), (2, 4, {'begin': 8, 'end': 15})]
[(2, 4, {'begin': 8, 'end': 15}), (4, 6, {'begin': 12, 'end': 19})]

Combining this method with SnapshotGraph can be a powerful tool to gain access to all the methods available
through DyNetworkX’s SnapshotGraph.

Similar to to_subgraph method, you can also divide the interval graph into a series of NetworkX’s MultiGraph, if that
is what you need.

5.2.7 Importing from text file

Using load_from_txt you can also read in an IntervalGraph or ImpulseGraph from a text file in a specific edge-list
format. For more detail checkout the documentation on IntervalGraph.load_from_txt().

5.2.8 Saving to text file

Using save_to_txt you can also write an IntervalGraph or ImpulseGraph to a text file in a specific edge-list format. For
more detail checkout the documentation on IntervalGraph.save_to_txt().

5.3 Download

5.3.1 Software

DyNetworkX package is still under development as of now, and there is no stable version available through PyPI.
However, if you wish to try the dev version for yourself, you can fork the github repository .

5.4 Reference

Date Mar 13, 2020

5.4.1 Introduction

The structure of DyNetworkX closely (and intentionally) resembles the structure of NetworkX, since it is a fork of
NetworkX.

5.3. Download 17

https://github.com/IdeasLabUT/dynetworkx

DyNetworkX Documentation, Release 0.1

DyNetworkX Basics

After starting Python, import the dynetworkx module with (the recommended way)

>>> import dynetworkx as dnx

To save repetition, in the documentation we assume that DyNetworkX has been imported this way.

If importing networkx fails, it means that Python cannot find the installed module. Check your installation and your
PYTHONPATH.

The following basic graph types are provided as Python classes:

IntervalGraph This class implements an undirected interval graph. Each edge must have a beginning and ending
as an interval. It ignores multiple edges (edges with the same nodes and interval) between two nodes. It does
allow self-loop edges between a node and itself.

SnapshotGraph This class implements an easy way to gain access to a list of NetworkX networks and provides
various methods to interact, manipulate and analyze the networks.

5.4.2 Graph Types

Interval Graph

Overview

class dynetworkx.IntervalGraph(**attr)
Base class for undirected interval graphs.

The IntervalGraph class allows any hashable object as a node and can associate key/value attribute pairs with
each undirected edge.

Each edge must have two integers, begin and end for its interval.

Self-loops are allowed but multiple edges (two or more edges with the same nodes, begin and end interval) are
not.

Two nodes can have more than one edge with different overlapping or non-overlapping intervals.

Parameters attr (keyword arguments, optional (default= no attributes))
– Attributes to add to graph as key=value pairs.

Examples

Create an empty graph structure (a “null interval graph”) with no nodes and no edges.

>>> G = dnx.IntervalGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

Add the nodes from any container (a list, dict, set)

18 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

>>> G.add_nodes_from([2, 3])
>>> G.add_nodes_from(range(100, 110))

Edges:

G can also be grown by adding edges. This can be considered the primary way to grow G, since nodes with no
edge will not appear in G in most cases. See G.to_snapshot().

Add one edge, which starts at 0 and ends at 10. Keep in mind that the interval is [0, 10). Thus, it does not
include the end.

>>> G.add_edge(1, 2, 0, 10)

a list of edges,

>>> G.add_edges_from([(1, 2, 0, 10), (1, 3, 3, 11)])

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when
adding nodes or edges that already exist.

Attributes:

Each interval graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the
keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node.

Keep in mind that the edge interval is not an attribute of the edge.

>>> G = dnx.IntervalGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from()

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')

Add edge attributes using add_edge(), add_edges_from().

>>> G.add_edge(1, 2, 0, 10, weight=4.7)
>>> G.add_edges_from([(3, 4, 3, 11), (4, 5, 0, 33)], color='red')

Shortcuts:

Here are a couple examples of available shortcuts:

>>> 1 in G # check if node in interval graph during any interval
True
>>> len(G) # number of nodes in the entire interval graph
5

Subclasses (Advanced): Edges in interval graphs are represented by Interval Objects and are kept in an In-
tervalTree. Both are based on intervaltree available in pypi (https://pypi.org/project/intervaltree). IntervalTree
allows for fast interval based search through edges, which makes interval graph analysis possible.

The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information
keyed by nodes. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by
interval objects. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed
by attribute names.

5.4. Reference 19

https://pypi.org/project/intervaltree

DyNetworkX Documentation, Release 0.1

Methods

Adding and removing nodes and edges

IntervalGraph.__init__(**attr) Initialize an interval graph with edges, name, or graph
attributes.

IntervalGraph.add_node(node_for_adding,
**attr)

Add a single node node_for_adding and update node
attributes.

IntervalGraph.add_nodes_from(. . .) Add multiple nodes.
IntervalGraph.remove_node(n[, begin, end]) Remove the presence of a node n within the given inter-

val.
IntervalGraph.add_edge(u, v, begin, end,
**attr)

Add an edge between u and v, during interval [begin,
end).

IntervalGraph.add_edges_from(ebunch_to_add,
. . .)

Add all the edges in ebunch_to_add.

IntervalGraph.remove_edge(u, v[, begin, . . .]) Remove the edge between u and v in the interval graph,
during the given interval.

dynetworkx.IntervalGraph.__init__

IntervalGraph.__init__(**attr)
Initialize an interval graph with edges, name, or graph attributes.

Parameters attr (keyword arguments, optional (default= no attributes))
– Attributes to add to graph as key=value pairs.

Examples

>>> G = dnx.IntervalGraph()
>>> G = dnx.IntervalGraph(name='my graph')
>>> G.graph
{'name': 'my graph'}

dynetworkx.IntervalGraph.add_node

IntervalGraph.add_node(node_for_adding, **attr)
Add a single node node_for_adding and update node attributes.

Parameters

• node_for_adding (node) – A node can be any hashable Python object except None.

• attr (keyword arguments, optional) – Set or change node attributes using
key=value.

See also:

add_nodes_from()

20 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> G.number_of_nodes()
2

Use keywords set/change node attributes:

>>> G.add_node(1, size=10)
>>> G.add_node(3, weight=0.4, UTM=('13S', 382871, 3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

dynetworkx.IntervalGraph.add_nodes_from

IntervalGraph.add_nodes_from(nodes_for_adding, **attr)
Add multiple nodes.

Parameters

• nodes_for_adding (iterable container) – A container of nodes (list, dict, set,
etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the
attribute dict.

• attr (keyword arguments, optional (default= no attributes)) –
Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take
precedence over attributes specified via keyword arguments.

See also:

add_node()

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_nodes_from('Hello')
>>> G.has_node('e')
True

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1, 2], size=10)
>>> G.add_nodes_from([3, 4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

5.4. Reference 21

DyNetworkX Documentation, Release 0.1

>>> G.add_nodes_from([(1, dict(size=11)), (2, {'color':'blue'})])

dynetworkx.IntervalGraph.remove_node

IntervalGraph.remove_node(n, begin=None, end=None)
Remove the presence of a node n within the given interval.

Removes the presence node n and all adjacent edges within the given interval.

If interval is specified, all the edges of n will be removed within that interval.

Quiet if n is not in the interval graph.

Parameters

• n (node) – A node in the graph

• begin (int or float, optional (default= beginning of the
entire interval graph)) – Inclusive beginning time of the node appearing
in the interval graph.

• end (int or float, optional (default= end of the entire
interval graph + 1)) – Non-inclusive ending time of the node appearing in
the interval graph. Must be bigger than or equal to begin. Note that the default value is
shifted up by 1 to make it an inclusive end.

Examples

>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11), (6, 4, 12, 19), (2, 4, 8,
→˓15)])
>>> G.add_nodes_from([(1, {'time': '1pm'}), (2, {'time': '2pm'}), (4, {'time':
→˓'4pm'})])
>>> G.nodes(begin=4, end=6)
[1, 2, 4, 6]
>>> G.remove_node(2, begin=4, end=6)
>>> G.nodes(begin=4, end=6)
[4, 6]
>>> G.nodes(data=True)
[(1, {'time': '1pm'}), (2, {'time': '2pm'}), (4, {'time': '4pm'}), (6, {})]
>>> G.remove_node(2)
>>> G.nodes(data=True)
[(1, {'time': '1pm'}), (4, {'time': '4pm'}), (6, {})]

dynetworkx.IntervalGraph.add_edge

IntervalGraph.add_edge(u, v, begin, end, **attr)
Add an edge between u and v, during interval [begin, end).

The nodes u and v will be automatically added if they are not already in the interval graph.

Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See
examples below.

Parameters

22 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• begin (orderable type) – Inclusive beginning time of the edge appearing in the in-
terval graph.

• end (orderable type) – Non-inclusive ending time of the edge appearing in the inter-
val graph. Must be bigger than begin.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edges_from() add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Both begin and end must be the same type across all edges in the interval graph. Also, to create snapshots, both
must be integers.

Many NetworkX algorithms designed for weighted graphs use an edge attribute (by default weight) to hold a
numerical value.

Examples

The following all add the edge e=(1, 2, 3, 10) to graph G:

>>> G = dnx.IntervalGraph()
>>> e = (1, 2, 3, 10)
>>> G.add_edge(1, 2, 3, 10) # explicit two-node form with interval
>>> G.add_edge(*e) # single edge as tuple of two nodes and interval
>>> G.add_edges_from([(1, 2, 3, 10)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, 3, 10 weight=3)
>>> G.add_edge(1, 3, 4, 9, weight=7, capacity=15, length=342.7)

dynetworkx.IntervalGraph.add_edges_from

IntervalGraph.add_edges_from(ebunch_to_add, **attr)
Add all the edges in ebunch_to_add.

Parameters

• ebunch_to_add (container of edges) – Each edge given in the container will be
added to the interval graph. The edges must be given as as 4-tuples (u, v, being, end). Both
begin and end must be orderable and the same type across all edges.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

5.4. Reference 23

DyNetworkX Documentation, Release 0.1

add_edge() add a single edge

Notes

Adding the same edge (with the same interval) twice has no effect but any edge data will be updated when each
duplicate edge is added.

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11)]) # using a list of edge tuples

Associate data to edges

>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11)], weight=3)
>>> G.add_edges_from([(3, 4, 2, 19), (1, 4, 1, 3)], label='WN2898')

dynetworkx.IntervalGraph.remove_edge

IntervalGraph.remove_edge(u, v, begin=None, end=None, overlapping=True)
Remove the edge between u and v in the interval graph, during the given interval.

Quiet if the specified edge is not present.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• begin (int or float, optional (default= beginning of the
entire interval graph)) – Inclusive beginning time of the edge appearing
in the interval graph.

• end (int or float, optional (default= end of the entire
interval graph + 1)) – Non-inclusive ending time of the edge appearing in
the interval graph. Must be bigger than or equal to begin. Note that the default value is
shifted up by 1 to make it an inclusive end.

• overlapping (bool, optional (default= True)) – if True, remove the edge
between u and v with overlapping interval with begin and end. if False, remove the edge
between u and v with the exact interval. Note: if False, both begin and end must be defined,
otherwise an exception is raised.

Raises NetworkXError – If begin and end are not defined and overlapping= False

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11), (6, 4, 5, 9), (1, 2, 8, 15)])
>>> G.remove_edge(1, 2)
>>> G.has_edge(1, 2)
False

With specific overlapping interval

24 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11), (6, 4, 5, 9), (1, 2, 8, 15)])
>>> G.remove_edge(1, 2, begin=2, end=4)
>>> G.has_edge(1, 2, begin=2, end=4)
False
>>> G.has_edge(1, 2)
True

Exact interval match

>>> G.remove_edge(2, 4, begin=1, end=11, overlapping=False)
>>> G.has_edge(2, 4, begin=1, end=11)
False

Reporting interval graph, nodes and edges

IntervalGraph.nodes([begin, end, data, default]) A NodeDataView of the IntervalGraph nodes.
IntervalGraph.has_node(n[, begin, end]) Return True if the interval graph contains the node n,

during the given interval.
IntervalGraph.edges([u, v, begin, end, . . .]) Returns a list of Interval objects of the IntervalGraph

edges.
IntervalGraph.has_edge(u, v[, begin, end, . . .]) Return True if there exists an edge between u and v in

the interval graph, during the given interval.
IntervalGraph.__contains__(n) Return True if n is a node, False otherwise.
IntervalGraph.__str__() Return the interval graph name.
IntervalGraph.interval() Return a 2-tuple as (begin, end) interval of the entire

dynetworkx.IntervalGraph.nodes

IntervalGraph.nodes(begin=None, end=None, data=False, default=None)
A NodeDataView of the IntervalGraph nodes.

A nodes is considered to be present during an interval, if it has an edge with overlapping interval.

Parameters

• begin (int or float, optional (default= beginning of the
entire interval graph)) – Inclusive beginning time of the node appearing
in the interval graph.

• end (int or float, optional (default= end of the entire
interval graph + 1)) – Non-inclusive ending time of the node appearing in
the interval graph. Must be bigger than or equal to begin. Note that the default value is
shifted up by 1 to make it an inclusive end.

• data (string or bool, optional (default=False)) – The node attribute
returned in 2-tuple (n, dict[data]). If False, return just the nodes n.

• default (value, optional (default=None)) – Value used for nodes that don’t
have the requested attribute. Only relevant if data is not True or False.

Returns

A NodeDataView iterates over (n, data) and has no set operations.

5.4. Reference 25

DyNetworkX Documentation, Release 0.1

When called, if data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node,
attribute value) where data is True.

Return type NodeDataView

Examples

There are two simple ways of getting a list of all nodes in the graph:

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11), (6, 4, 12, 19), (2, 4, 8,
→˓15)])
[1, 2, 4, 6]

To get the node data along with the nodes:

>>> G.add_nodes_from([(1, {'time': '1pm'}), (2, {'time': '2pm'}), (4, {'time':
→˓'4pm'}), (6, {'day': 'Friday'})])
[(1, {'time': '1pm'}), (2, {'time': '2pm'}), (4, {'time': '4pm'}), (6, {'day':
→˓'Friday'})]

>>> G.nodes(data="time")
[(1, '1pm'), (2, '2pm'), (4, '4pm'), (6, None)]
>>> G.nodes(data="time", default="5pm")
[(1, '1pm'), (2, '2pm'), (4, '4pm'), (6, '5pm')]

To get nodes which appear in a specific interval. nodes without an edge are not considered present.

>>> G.nodes(begin=11, data=True)
[(2, {'time': '2pm'}), (4, {'time': '4pm'}), (6, {'day': 'Friday'})]
>>> G.nodes(begin=4, end=12) # non-inclusive end
[1, 2, 4]

dynetworkx.IntervalGraph.has_node

IntervalGraph.has_node(n, begin=None, end=None)
Return True if the interval graph contains the node n, during the given interval.

Identical to n in G when ‘begin’ and ‘end’ are not defined.

Parameters

• n (node) –

• begin (int or float, optional (default= beginning of the
entire interval graph)) – Inclusive beginning time of the node appearing
in the interval graph.

• end (int or float, optional (default= end of the entire
interval graph + 1)) – Non-inclusive ending time of the node appearing in
the interval graph. Must be bigger than or equal begin. Note that the default value is shifted
up by 1 to make it an inclusive end.

26 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_ndoe(1)
>>> G.has_node(1)
True

It is more readable and simpler to use

>>> 0 in G
True

With interval query:

>>> G.add_edge(3, 4, 2, 5)
>>> G.has_node(3)
True
>>> G.has_node(3, begin=2)
True
>>> G.has_node(3, end=2) # end is non-inclusive
False

dynetworkx.IntervalGraph.edges

IntervalGraph.edges(u=None, v=None, begin=None, end=None, data=False, default=None)
Returns a list of Interval objects of the IntervalGraph edges.

All edges which are present within the given interval.

All parameters are optional. u and v can be thought of as constraints. If no node is defined, all edges within the
interval are returned. If one node is defined, all edges which have that node as one end, will be returned, and
finally if both nodes are defined then all edges between the two nodes are returned.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects. If the node does not exist in the graph, a key error is raised.

• begin (int or float, optional (default= beginning of the
entire interval graph)) – Inclusive beginning time of the edge appearing
in the interval graph.

• end (int or float, optional (default= end of the entire
interval graph + 1)) – Non-inclusive ending time of the edge appearing in
the interval graph. Must be bigger than or equal to begin. Note that the default value is
shifted up by 1 to make it an inclusive end.

• data (string or bool, optional (default=False)) – If True, return 2-
tuple (Interval object, dict of attributes). If False, return just the Interval objects. If string
(name of the attribute), return 2-tuple (Interval object, attribute value).

• default (value, optional (default=None)) – Default Value to be used for
edges that don’t have the requested attribute. Only relevant if data is a string (name of an
attribute).

Returns

An interval object has the following format: (begin, end, (u, v))

5.4. Reference 27

DyNetworkX Documentation, Release 0.1

When called, if data is False, a list of interval objects. If data is True, a list of 2-tuples: (Interval,
dict of attribute(s) with values), If data is a string, a list of 2-tuples (Interval, attribute value).

Return type List of Interval objects

Examples

To get a list of all edges:

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11), (6, 4, 12, 19), (2, 4, 8,
→˓15)])
>>> G.edges()
[Interval(8, 15, (2, 4)), Interval(3, 10, (1, 2)), Interval(1, 11, (2, 4)),
→˓Interval(12, 19, (6, 4))]

To get edges which appear in a specific interval:

>>> G.edges(begin=10)
[Interval(12, 19, (6, 4)), Interval(1, 11, (2, 4)), Interval(8, 15, (2, 4))]
>>> G.edges(end=5)
[Interval(3, 10, (1, 2)), Interval(1, 11, (2, 4))]
>>> G.edges(begin=2, end=4)
[Interval(3, 10, (1, 2)), Interval(1, 11, (2, 4))]

To get edges with either of the two nodes being defined:

>>> G.edges(u=2)
[Interval(3, 10, (1, 2)), Interval(1, 11, (2, 4)), Interval(8, 15, (2, 4))]
>>> G.edges(u=2, begin=11)
[Interval(1, 11, (2, 4)), Interval(8, 15, (2, 4))]
>>> G.edges(u=2, v=4, end=8)
[Interval(1, 11, (2, 4))]
>>> G.edges(u=1, v=6)
[]

To get a list of edges with data:

>>> G = dnx.IntervalGraph()
>>> G.add_edge(1, 3, 1, 4, weight=8, height=18)
>>> G.add_edge(1, 2, 3, 10, weight=10)
>>> G.add_edge(2, 6, 2, 10)
>>> G.edges(data="weight")
[(Interval(2, 8, (2, 3)), None), (Interval(3, 10, (1, 2)), 10), (Interval(1, 4,
→˓(1, 3)), 8)]
>>> G.edges(data="weight", default=5)
[(Interval(2, 8, (2, 3)), 5), (Interval(3, 10, (1, 2)), 10), (Interval(1, 4, (1,
→˓3)), 8)]
>>> G.edges(data=True)
[(Interval(2, 8, (2, 3)), {}), (Interval(3, 10, (1, 2)), {'weight': 10}),
→˓(Interval(1, 4, (1, 3)), {'height': 18, 'weight': 8})]
>>> G.edges(u=1, begin=5, end=9, data="weight")
[(Interval(3, 10, (1, 2)), 10)]

28 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

dynetworkx.IntervalGraph.has_edge

IntervalGraph.has_edge(u, v, begin=None, end=None, overlapping=True)
Return True if there exists an edge between u and v in the interval graph, during the given interval.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• begin (int or float, optional (default= beginning of the
entire interval graph)) – Inclusive beginning time of the node appearing
in the interval graph.

• end (int or float, optional (default= end of the entire
interval graph + 1)) – Non-inclusive ending time of the node appearing in
the interval graph. Must be bigger than or equal begin. Note that the default value is shifted
up by 1 to make it an inclusive end.

• overlapping (bool, optional (default= True)) – if True, it returns True if
there exists an edge between u and v with overlapping interval with begin and end. if False,
it returns true only if there exists an edge between u and v with the exact interval. Note: if
False, both begin and end must be defined, otherwise an exception is raised.

Raises NetworkXError – If begin and end are not defined and overlapping= False

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11)])
>>> G.has_edge(1, 2)
True

With specific overlapping interval:

>>> G.has_edge(1, 2, begin=2)
True
>>> G.has_edge(2, 4, begin=12)
False

Exact interval match:

>>> G.has_edge(2, 4, begin=1, end=11)
True
>>> G.has_edge(2, 4, begin=2, end=11)
False

dynetworkx.IntervalGraph.__contains__

IntervalGraph.__contains__(n)
Return True if n is a node, False otherwise. Use: ‘n in G’.

5.4. Reference 29

DyNetworkX Documentation, Release 0.1

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_node(2)
>>> 2 in G
True

dynetworkx.IntervalGraph.__str__

IntervalGraph.__str__()
Return the interval graph name.

Returns name – The name of the interval graph.

Return type string

Examples

>>> G = dnx.IntervalGraph(name='foo')
>>> str(G)
'foo'

dynetworkx.IntervalGraph.interval

IntervalGraph.interval()

Return a 2-tuple as (begin, end) interval of the entire interval graph.

Note that end is non-inclusive.

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 0, 10), (3, 7, 9, 16)])
>>> G.interval()
(0, 16)

Counting nodes and edges

IntervalGraph.number_of_nodes([begin,
end])

Return the number of nodes in the interval graph be-
tween the given interval.

IntervalGraph.__len__() Return the number of nodes.

dynetworkx.IntervalGraph.number_of_nodes

IntervalGraph.number_of_nodes(begin=None, end=None)
Return the number of nodes in the interval graph between the given interval.

Parameters

30 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

• begin (int or float, optional (default= beginning of the
entire interval graph)) – Inclusive beginning time of the node appearing
in the interval graph.

• end (int or float, optional (default= end of the entire
interval graph + 1)) – Non-inclusive ending time of the node appearing in
the interval graph. Must be bigger than or equal begin. Note that the default value is shifted
up by 1 to make it an inclusive end.

Returns nnodes – The number of nodes in the interval graph.

Return type int

See also:

__len__()

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 0, 5), (3, 4, 8, 11)])
>>> len(G)
4
>>> G.number_of_nodes()
4
>>> G.number_of_nodes(begin=6)
2
>>> G.number_of_nodes(begin=5, end=8) # end in non-inclusive
2
>>> G.number_of_nodes(end=8)
4

dynetworkx.IntervalGraph.__len__

IntervalGraph.__len__()
Return the number of nodes. Use: ‘len(G)’.

Returns nnodes – The number of nodes in the graph.

Return type int

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_nodes_from([2, 4, 5])
>>> len(G)
3

Making copies and subgraphs

5.4. Reference 31

DyNetworkX Documentation, Release 0.1

IntervalGraph.to_subgraph(begin, end[, . . .]) Return a networkx Graph or MultiGraph which includes
all the nodes and edges which have overlapping inter-
vals with the given interval.

IntervalGraph.to_snapshots(number_of_snapshots)Return a list of networkx Graph or MultiGraph objects
as snapshots of the interval graph in consecutive order.

dynetworkx.IntervalGraph.to_subgraph

IntervalGraph.to_subgraph(begin, end, multigraph=False, edge_data=False,
edge_interval_data=False, node_data=False)

Return a networkx Graph or MultiGraph which includes all the nodes and edges which have overlapping inter-
vals with the given interval.

Parameters

• begin (int or float) – Inclusive beginning time of the edge appearing in the interval
graph.

• end (int or float) – Non-inclusive ending time of the edge appearing in the interval
graph. Must be bigger than or equal to begin.

• multigraph (bool, optional (default= False)) – If True, a networkx
MultiGraph will be returned. If False, networkx Graph.

• edge_data (bool, optional (default= False)) – If True, edges will keep
their attributes.

• edge_interval_data (bool, optional (default= False)) – If True, each
edge’s attribute will also include its begin and end interval data. If edge_data= True and
there already exist edge attributes with names begin and end, they will be overwritten.

• node_data (bool, optional (default= False)) – if True, each node’s at-
tributes will be included.

See also:

to_snapshots() divide the interval graph to snapshots

Notes

If multigraph= False, and edge_data=True or edge_interval_data=True, in case there are multiple edges, only
one will show with one of the edge’s attributes.

Note: nodes with no edges will not appear in any subgraph.

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11), (6, 4, 12, 19), (2, 4, 8,
→˓15)])
>>> H = G.to_subgraph(4, 12)
>>> type(H)
<class 'networkx.classes.graph.Graph'>
>>> list(H.edges(data=True))
[(1, 2, {}), (2, 4, {})]

32 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

>>> H = G.to_subgraph(4, 12, edge_interval_data=True)
>>> type(H)
<class 'networkx.classes.graph.Graph'>
>>> list(H.edges(data=True))
[(1, 2, {'end': 10, 'begin': 3}), (2, 4, {'end': 15, 'begin': 8})]

>>> M = G.to_subgraph(4, 12, multigraph=True, edge_interval_data=True)
>>> type(M)
<class 'networkx.classes.multigraph.MultiGraph'>
>>> list(M.edges(data=True))
[(1, 2, {'end': 10, 'begin': 3}), (2, 4, {'end': 11, 'begin': 1}), (2, 4, {'end':
→˓15, 'begin': 8})]

dynetworkx.IntervalGraph.to_snapshots

IntervalGraph.to_snapshots(number_of_snapshots, multigraph=False, edge_data=False,
edge_interval_data=False, node_data=False, return_length=False)

Return a list of networkx Graph or MultiGraph objects as snapshots of the interval graph in consecutive order.

Parameters

• number_of_snapshots (integer) – Number of snapshots to divide the interval graph
into. Must be bigger than 1.

• multigraph (bool, optional (default= False)) – If True, a networkx
MultiGraph will be returned. If False, networkx Graph.

• edge_data (bool, optional (default= False)) – If True, edges will keep
their attributes.

• edge_interval_data (bool, optional (default= False)) – If True, each
edge’s attribute will also include its begin and end interval data. If edge_data= True and
there already exist edge attributes with names begin and end, they will be overwritten.

• node_data (bool, optional (default= False)) – if True, each node’s at-
tributes will be included.

• return_length (bool, optional (default= False)) – If true, the length of
snapshots will be returned as the second argument.

See also:

to_subgraph() subgraph based on an interval

Notes

In order to create snapshots, begin and end interval objects of the interval graph must be numbers.

If multigraph= False, and edge_data=True or edge_interval_data=True, in case there are multiple edges, only
one will show with one of the edge’s attributes.

Examples

Snapshots of NetworkX Graph

5.4. Reference 33

DyNetworkX Documentation, Release 0.1

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 3, 10), (2, 4, 1, 11), (6, 4, 12, 19), (2, 4, 8,
→˓15)])
>>> S, l = G.to_snapshots(2, edge_interval_data=True, return_length=True)
>>> S
[<networkx.classes.graph.Graph object at 0x100000>, <networkx.classes.graph.Graph
→˓object at 0x150d00>]
>>> l
9.0
>>> for g in S:
>>> ... g.edges(data=True))
[(1, 2, {'begin': 3, 'end': 10}), (2, 4, {'begin': 8, 'end': 15})]
[(2, 4, {'begin': 8, 'end': 15}), (4, 6, {'begin': 12, 'end': 19})]

Snapshots of NetworkX MultiGraph

>>> S, l = G.to_snapshots(3, multigraph=True, edge_interval_data=True, return_
→˓length=True)
>>> S
[<networkx.classes.multigraph.MultiGraph object at 0x1060d40b8>, <networkx.
→˓classes.multigraph.MultiGraph object at 0x151020c9e8>, <networkx.classes.
→˓multigraph.MultiGraph object at 0x151021d390>]
>>> l
6.0
>>> for g in S:
>>> ... g.edges(data=True))
[(1, 2, {'end': 10, 'begin': 3}), (2, 4, {'end': 11, 'begin': 1})]
[(1, 2, {'end': 10, 'begin': 3}), (2, 4, {'end': 11, 'begin': 1}), (2, 4, {'end':
→˓15, 'begin': 8}), (4, 6, {'end': 19, 'begin': 12})]
[(2, 4, {'end': 15, 'begin': 8}), (4, 6, {'end': 19, 'begin': 12})]

Loading an interval graph

IntervalGraph.load_from_txt(path[, . . .]) Read interval graph in from path.
IntervalGraph.save_to_txt(path[, delimiter]) Write interval graph to path.

dynetworkx.IntervalGraph.load_from_txt

static IntervalGraph.load_from_txt(path, delimiter=’ ’, nodetype=None, intervaltype=<class
’float’>, comments=’#’)

Read interval graph in from path. Every line in the file must be an edge in the following format: “node node
begin end”. Both interval times must be integers or floats. Nodes can be any hashable objects.

Parameters

• path (string or file) – Filename to read.

• nodetype (Python type, optional) – Convert nodes to this type.

• intervaltype (Python type, optional (default= float)) –

• interval begin and end to this type. (Convert) –

• must be an orderable type, ideally int or float. Other
orderable types have not been fully tested. (This) –

34 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels. The default is whites-
pace.

Returns G – The graph corresponding to the lines in edge list.

Return type IntervalGraph

Examples

>>> G=dnx.IntervalGraph.load_from_txt("my_dygraph.txt")

The optional nodetype is a function to convert node strings to nodetype.

For example

>>> G=dnx.IntervalGraph.load_from_txt("my_dygraph.txt", nodetype=int)

will attempt to convert all nodes to integer type.

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

dynetworkx.IntervalGraph.save_to_txt

IntervalGraph.save_to_txt(path, delimiter=’ ’)

Write interval graph to path. Every line in the file must be an edge in the following format: “node node begin
end”. Begin, end must be integers or floats. Nodes can be any hashable objects.

Parameters

• path (string or file) – Filename to read.

• delimiter (string, optional) – Separator for node labels. The default is whites-
pace. Cannot be =.

Examples

>>> G.save_to_txt("my_dygraph.txt")

Analyzing interval graphs

IntervalGraph.degree([node, begin, end, delta]) Return the degree of a specified node between time be-
gin and end.

dynetworkx.IntervalGraph.degree

IntervalGraph.degree(node=None, begin=None, end=None, delta=False)
Return the degree of a specified node between time begin and end.

Parameters

5.4. Reference 35

DyNetworkX Documentation, Release 0.1

• node (Nodes can be, for example, strings or numbers,
optional.) – Nodes must be hashable (and not None) Python objects.

• begin (int or float, optional (default= beginning of the
entire interval graph)) – Inclusive beginning time of the edge appearing
in the interval graph.

• end (int or float, optional (default= end of the entire
interval graph)) – Non-inclusive ending time of the edge appearing in the
interval graph.

Returns

• Integer value of degree of specified node.

• If no node is specified, returns float mean degree value of graph.

• If delta is True, return list of tuples. – First indicating the time a degree change occurred,
Second indicating the degree after the change occured

Examples

>>> G = IntervalGraph()
>>> G.add_edge(1, 2, 3, 5)
>>> G.add_edge(2, 3, 8, 11)
>>> G.degree(2)
2
>>> G.degree(2,2)
2
>>> G.degree(2,end=8)
1
>>> G.degree()
1.33333
>>> G.degree(2,delta=True)
[(3, 1), (5, 0), (8, 1)]

Impulse Graph

Overview

class dynetworkx.ImpulseGraph(name=”, **attr)
Base class for undirected interval graphs.

The ImpulseGraph class allows any hashable object as a node and can associate key/value attribute pairs with
each undirected edge.

Each edge must have one integer, timestamp.

Self-loops are allowed. Multiple edges between two nodes are allowed.

Parameters attr (keyword arguments, optional (default= no attributes))
– Attributes to add to graph as key=value pairs.

Examples

Create an empty graph structure (a “null interval graph”) with no nodes and no edges.

36 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

>>> G = dnx.ImpulseGraph()

G can be grown in several ways.

Nodes:

Add one node at a time:

>>> G.add_node(1)

Add the nodes from any container (a list, dict, set or even the lines from a file or the nodes from another graph).

Add the nodes from any container (a list, dict, set)

>>> G.add_nodes_from([2, 3])
>>> G.add_nodes_from(range(100, 110))

Edges:

G can also be grown by adding edges. This can be considered the primary way to grow G, since nodes with no
edge will not appear in G in most cases. See G.to_snapshot().

Add one edge, with timestamp of 10.

>>> G.add_edge(1, 2, 10)

a list of edges,

>>> G.add_edges_from([(1, 2, 10), (1, 3, 11)])

If some edges connect nodes not yet in the graph, the nodes are added automatically. There are no errors when
adding nodes or edges that already exist.

Attributes:

Each impulse graph, node, and edge can hold key/value attribute pairs in an associated attribute dictionary (the
keys must be hashable). By default these are empty, but can be added or changed using add_edge, add_node.

Keep in mind that the edge timestamp is not an attribute of the edge.

>>> G = dnx.IntervalGraph(day="Friday")
>>> G.graph
{'day': 'Friday'}

Add node attributes using add_node(), add_nodes_from()

>>> G.add_node(1, time='5pm')
>>> G.add_nodes_from([3], time='2pm')

Add edge attributes using add_edge(), add_edges_from().

>>> G.add_edge(1, 2, 10, weight=4.7)
>>> G.add_edges_from([(3, 4, 11), (4, 5, 33)], color='red')

Shortcuts:

Here are a couple examples of available shortcuts:

5.4. Reference 37

DyNetworkX Documentation, Release 0.1

>>> 1 in G # check if node in impulse graph during any timestamp
True
>>> len(G) # number of nodes in the entire impulse graph
5

Subclasses (Advanced): Edges in impulse graphs are represented by tuples kept in a SortedDict (http://www.
grantjenks.com/docs/sortedcontainers/) keyed by timestamp.

The Graph class uses a dict-of-dict-of-dict data structure. The outer dict (node_dict) holds adjacency information
keyed by nodes. The next dict (adjlist_dict) represents the adjacency information and holds edge data keyed by
interval objects. The inner dict (edge_attr_dict) represents the edge data and holds edge attribute values keyed
by attribute names.

Methods

Adding and removing nodes and edges

ImpulseGraph.__init__([name]) Initialize an interval graph with edges, name, or graph
attributes.

ImpulseGraph.add_node(node_for_adding,
**attr)

Add a single node node_for_adding and update node
attributes.

ImpulseGraph.add_nodes_from(. . .) Add multiple nodes.
ImpulseGraph.remove_node(n[, begin, end,
. . .])

Remove the presence of a node n within the given inter-
val.

ImpulseGraph.add_edge(u, v, t, **attr) Add an edge between u and v, at t.
ImpulseGraph.add_edges_from(ebunch_to_add,
. . .)

Add all the edges in ebunch_to_add.

ImpulseGraph.remove_edge(u, v[, begin, end,
. . .])

Remove the edge between u and v in the impulse graph,
during the given interval.

dynetworkx.ImpulseGraph.__init__

ImpulseGraph.__init__(name=”, **attr)
Initialize an interval graph with edges, name, or graph attributes.

Parameters attr (keyword arguments, optional (default= no attributes))
– Attributes to add to graph as key=value pairs.

Examples

>>> G = dnx.ImpulseGraph()
>>> G = dnx.ImpulseGraph(name='my graph')
>>> G.graph
{'name': 'my graph'}

dynetworkx.ImpulseGraph.add_node

ImpulseGraph.add_node(node_for_adding, **attr)
Add a single node node_for_adding and update node attributes.

38 Chapter 5. Documentation

http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/

DyNetworkX Documentation, Release 0.1

Parameters

• node_for_adding (node) – A node can be any hashable Python object except None.

• attr (keyword arguments, optional) – Set or change node attributes using
key=value.

See also:

add_nodes_from()

Examples

>>> G = dnx.ImpulseGraph()
>>> G.add_node(1)
>>> G.add_node('Hello')
>>> G.number_of_nodes()
2

Use keywords set/change node attributes:

>>> G.add_node(1, size=10)
>>> G.add_node(3, weight=0.4, UTM=('13S', 382871, 3972649))

Notes

A hashable object is one that can be used as a key in a Python dictionary. This includes strings, numbers, tuples
of strings and numbers, etc.

On many platforms hashable items also include mutables such as NetworkX Graphs, though one should be
careful that the hash doesn’t change on mutables.

dynetworkx.ImpulseGraph.add_nodes_from

ImpulseGraph.add_nodes_from(nodes_for_adding, **attr)
Add multiple nodes.

Parameters

• nodes_for_adding (iterable container) – A container of nodes (list, dict, set,
etc.). OR A container of (node, attribute dict) tuples. Node attributes are updated using the
attribute dict.

• attr (keyword arguments, optional (default= no attributes)) –
Update attributes for all nodes in nodes. Node attributes specified in nodes as a tuple take
precedence over attributes specified via keyword arguments.

See also:

add_node()

Examples

5.4. Reference 39

DyNetworkX Documentation, Release 0.1

>>> G = dnx.ImpulseGraph()
>>> G.add_nodes_from('Hello')
>>> G.has_node('e')
True

Use keywords to update specific node attributes for every node.

>>> G.add_nodes_from([1, 2], size=10)
>>> G.add_nodes_from([3, 4], weight=0.4)

Use (node, attrdict) tuples to update attributes for specific nodes.

>>> G.add_nodes_from([(1, dict(size=11)), (2, {'color':'blue'})])

dynetworkx.ImpulseGraph.remove_node

ImpulseGraph.remove_node(n, begin=None, end=None, inclusive=(True, True))
Remove the presence of a node n within the given interval.

Removes the presence node n and all adjacent edges within the given interval.

If interval is specified, all the edges of n will be removed within that interval.

Quiet if n is not in the impulse graph.

Parameters

• n (node) – A node in the graph

• begin (int or float, optional (default= beginning of the
entire impulse graph)) –

• end (int or float, optional (default= end of the entire
impulse graph)) – Must be bigger than or equal to begin.

• inclusive (2-tuple boolean that determines inclusivity of
begin and end) –

Examples

>>> G.add_edges_from([(1, 2, 10), (2, 4, 11), (6, 4, 19), (2, 4, 15)])
>>> G.add_nodes_from([(1, {'time': '1pm'}), (2, {'time': '2pm'}), (4, {'time':
→˓'4pm'})])
>>> G.nodes(begin=10, end=19)
[1, 2, 4, 6]
>>> G.remove_node(6, begin=10, end=20)
>>> G.nodes()
[1, 2, 4]
>>> G.nodes(data=True)
[(1, {'time': '1pm'}), (2, {'time': '2pm'}), (4, {'time': '4pm'})]
>>> G.remove_node(2)
>>> G.nodes(data=True)
[(1, {'time': '1pm'}), (4, {'time': '4pm'})]

40 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

dynetworkx.ImpulseGraph.add_edge

ImpulseGraph.add_edge(u, v, t, **attr)
Add an edge between u and v, at t.

The nodes u and v will be automatically added if they are not already in the impulse graph.

Edge attributes can be specified with keywords or by directly accessing the edge’s attribute dictionary. See
examples below.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• t (timestamp) – Timestamps can be, for example, strings or numbers. Timestamps must
be hashable (and not None) Python objects.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edges_from() add a collection of edges

Notes

Adding an edge that already exists updates the edge data.

Timestamps must be the same type across all edges in the impulse graph. Also, to create snapshots, timestamps
must be integers.

Many NetworkX algorithms designed for weighted graphs use an edge attribute (by default weight) to hold a
numerical value.

Examples

The following all add the edge e=(1, 2, 3, 10) to graph G:

>>> G = dnx.ImpulseGraph()
>>> e = (1, 2, 10)
>>> G.add_edge(1, 2, 10) # explicit two-node form with timestamp
>>> G.add_edge(*e) # single edge as tuple of two nodes and timestamp
>>> G.add_edges_from([(1, 2, 10)]) # add edges from iterable container

Associate data to edges using keywords:

>>> G.add_edge(1, 2, 10 weight=3)
>>> G.add_edge(1, 3, 9, weight=7, capacity=15, length=342.7)

dynetworkx.ImpulseGraph.add_edges_from

ImpulseGraph.add_edges_from(ebunch_to_add, **attr)
Add all the edges in ebunch_to_add.

Parameters

5.4. Reference 41

DyNetworkX Documentation, Release 0.1

• ebunch_to_add (container of edges) – Each edge given in the container will be
added to the interval graph. The edges must be given as as 3-tuples (u, v, t). Timestamp
must be orderable and the same type across all edges.

• attr (keyword arguments, optional) – Edge data (or labels or objects) can be
assigned using keyword arguments.

See also:

add_edge() add a single edge

Notes

Adding the same edge (with the same timestamp) twice has no effect but any edge data will be updated when
each duplicate edge is added.

Examples

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 10), (2, 4, 11)]) # using a list of edge tuples

Associate data to edges

>>> G.add_edges_from([(1, 2, 10), (2, 4, 11)], weight=3)
>>> G.add_edges_from([(3, 4, 19), (1, 4, 3)], label='WN2898')

dynetworkx.ImpulseGraph.remove_edge

ImpulseGraph.remove_edge(u, v, begin=None, end=None, inclusive=(True, True))
Remove the edge between u and v in the impulse graph, during the given interval.

Quiet if the specified edge is not present.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• begin (int or float, optional (default= beginning of the
entire interval graph)) –

• end (int or float, optional (default= end of the entire
interval graph + 1)) – Must be bigger than or equal to begin.

• inclusive (2-tuple boolean that determines inclusivity of
begin and end) –

Examples

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 10), (2, 4, 11), (6, 4, 9), (1, 2, 15)])
>>> G.remove_edge(1, 2)
>>> G.has_edge(1, 2)
False

42 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 10), (2, 4, 11), (6, 4, 9), (1, 2, 15)])
>>> G.remove_edge(1, 2, begin=2, end=11)
>>> G.has_edge(1, 2, begin=2, end=11)
False
>>> G.has_edge(1, 2)
True

Reporting impulse graph, nodes and edges

ImpulseGraph.nodes([begin, end, inclusive, . . .]) A NodeDataView of the ImpulseGraph nodes.
ImpulseGraph.has_node(n[, begin, end, inclu-
sive])

Return True if the impulse graph contains the node n,
during the given interval.

ImpulseGraph.edges([u, v, begin, end, . . .]) Returns a list of Interval objects of the IntervalGraph
edges.

ImpulseGraph.has_edge(u, v[, begin, end, . . .]) Return True if there exists an edge between u and v in
the impulse graph, during the given interval.

ImpulseGraph.__contains__(n) Return True if n is a node, False otherwise.
ImpulseGraph.__str__() Return the interval graph name.
ImpulseGraph.interval() Return a 2-tuple as (begin, end) interval of the entire

dynetworkx.ImpulseGraph.nodes

ImpulseGraph.nodes(begin=None, end=None, inclusive=(True, True), data=False, default=None)
A NodeDataView of the ImpulseGraph nodes.

A nodes is considered to be present during an interval, if it has an edge with overlapping interval.

Parameters

• begin (int or float, optional (default= beginning of the
entire impulse graph)) –

• end (int or float, optional (default= end of the entire
impulse graph)) – Must be bigger than or equal to begin.

• inclusive (2-tuple boolean that determines inclusivity of
begin and end) –

• data (string or bool, optional (default=False)) – The node attribute
returned in 2-tuple (n, dict[data]). If False, return just the nodes n.

• default (value, optional (default=None)) – Value used for nodes that don’t
have the requested attribute. Only relevant if data is not True or False.

Returns

A NodeDataView iterates over (n, data) and has no set operations.

When called, if data is False, an iterator over nodes. Otherwise an iterator of 2-tuples (node,
attribute value) where data is True.

Return type NodeDataView

5.4. Reference 43

DyNetworkX Documentation, Release 0.1

Examples

There are two simple ways of getting a list of all nodes in the graph:

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 10), (2, 4, 11), (6, 4, 19), (2, 4, 15)])
>>> G.nodes()
[1, 2, 4, 6]

To get the node data along with the nodes:

>>> G.add_nodes_from([(1, {'time': '1pm'}), (2, {'time': '2pm'}), (4, {'time':
→˓'4pm'}), (6, {'day': 'Friday'})])
>>> G.nodes(data=True)
[(1, {'time': '1pm'}), (2, {'time': '2pm'}), (4, {'time': '4pm'}), (6, {'day':
→˓'Friday'})]

>>> G.nodes(data="time")
[(1, '1pm'), (2, '2pm'), (4, '4pm'), (6, None)]
>>> G.nodes(data="time", default="5pm")
[(1, '1pm'), (2, '2pm'), (4, '4pm'), (6, '5pm')]

To get nodes which appear in a specific interval. Nodes without an edge are not considered present.

>>> G.nodes(begin=11, data=True)
[(2, {'time': '2pm'}), (4, {'time': '4pm'}), (6, {'day': 'Friday'})]
>>> G.nodes(begin=4, end=12)
[1, 2, 4]

dynetworkx.ImpulseGraph.has_node

ImpulseGraph.has_node(n, begin=None, end=None, inclusive=(True, True))
Return True if the impulse graph contains the node n, during the given interval.

Identical to n in G when ‘begin’ and ‘end’ are not defined.

Parameters

• n (node) –

• begin (int or float, optional (default= beginning of the
entire impulse graph)) –

• end (int or float, optional (default= end of the entire
impulse graph)) – Must be bigger than or equal begin.

• inclusive (2-tuple boolean that determines inclusivity of
begin and end) –

Examples

>>> G = dnx.ImpulseGraph()
>>> G.add_node(1)
>>> G.has_node(1)
True

It is more readable and simpler to use

44 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

>>> 1 in G
True

With interval query:

>>> G.add_edge(3, 4, 5)
>>> G.has_node(3)
True
>>> G.has_node(3, begin=2)
True
>>> G.has_node(3, end=2)
False

dynetworkx.ImpulseGraph.edges

ImpulseGraph.edges(u=None, v=None, begin=None, end=None, inclusive=(True, True), data=False,
default=None)

Returns a list of Interval objects of the IntervalGraph edges.

All edges which are present within the given interval.

All parameters are optional. u and v can be thought of as constraints. If no node is defined, all edges within the
interval are returned. If one node is defined, all edges which have that node as one end, will be returned, and
finally if both nodes are defined then all edges between the two nodes are returned.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects. If the node does not exist in the graph, a key error is raised.

• begin (int or float, optional (default= beginning of the
entire impulse graph)) –

• end (int or float, optional (default= end of the entire
impulse graph)) – Must be bigger than or equal to begin.

• inclusive (2-tuple boolean that determines inclusivity of
begin and end) –

• data (string or bool, optional (default=False)) – If True, return 2-
tuple (Edge Tuple, dict of attributes). If False, return just the Edge Tuples. If string (name
of the attribute), return 2-tuple (Edge Tuple, attribute value).

• default (value, optional (default=None)) – Default Value to be used for
edges that don’t have the requested attribute. Only relevant if data is a string (name of an
attribute).

Returns

An edge tuple has the following format: (u, v, edge_id, timestamp)

When called, if data is False, a list of edge tuples. If data is True, a list of 2-tuples: (Edge Tuple,
dict of attribute(s) with values), If data is a string, a list of 2-tuples (Edge Tuple, attribute value).

Return type List of Edge Tuples

Examples

To get a list of all edges:

5.4. Reference 45

DyNetworkX Documentation, Release 0.1

>>> G = dnx.IntervalGraph()
>>> G.add_edges_from([(1, 2, 10), (2, 4, 11), (6, 4, 19), (2, 4, 15)])
>>> G.edges()
[(1, 2, 10), (2, 4, 11), (2, 4, 15), (6, 4, 19)]

To get edges which appear in a specific interval:

>>> G.edges(begin=10)
[(1, 2, 10), (2, 4, 11), (2, 4, 15), (6, 4, 19)]
>>> G.edges(end=11)
[(1, 2, 10), (2, 4, 11)]
>>> G.edges(begin=11, end=15)
[(2, 4, 11), (2, 4, 15)]

To get edges with either of the two nodes being defined:

>>> G.edges(u=2)
[(2, 4, 11), (2, 4, 15)]
>>> G.edges(u=2, begin=11)
[(2, 4, 11), (2, 4, 15)]
>>> G.edges(u=2, v=4, end=11)
[(2, 4, 11)]
>>> G.edges(u=1, v=6)
[]

To get a list of edges with data:

>>> G = dnx.ImpulseGraph()
>>> G.add_edge(1, 3, 4, weight=8, height=18)
>>> G.add_edge(1, 2, 10, weight=10)
>>> G.add_edge(2, 6, 10)
>>> G.edges(data="weight")
[((1, 3, 4), 8), ((1, 2, 10), 10), ((2, 6, 10), None)]
>>> G.edges(data="weight", default=5)
[((1, 3, 4), 8), ((1, 2, 10), 10), ((2, 6, 10), 5)]
>>> G.edges(data=True)
[((1, 3, 4), {'weight': 8, 'height': 18}), ((1, 2, 10), {'weight': 10}), ((2, 6,
→˓10), {})]
>>> G.edges(u=1, begin=2, end=9, data="weight")
[((1, 3, 4), 8)]

dynetworkx.ImpulseGraph.has_edge

ImpulseGraph.has_edge(u, v, begin=None, end=None, inclusive=(True, True))
Return True if there exists an edge between u and v in the impulse graph, during the given interval.

Parameters

• v (u,) – Nodes can be, for example, strings or numbers. Nodes must be hashable (and not
None) Python objects.

• begin (int or float, optional (default= beginning of the
entire impulse graph)) –

• end (int or float, optional (default= end of the entire
impulse graph)) – Must be bigger than or equal begin.

46 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

• inclusive (2-tuple boolean that determines inclusivity of
begin and end) –

Examples

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 10), (2, 4, 11)])
>>> G.has_edge(1, 2)
True
>>> G.has_edge(1, 2, begin=2)
True
>>> G.has_edge(2, 4, begin=12)
False

dynetworkx.ImpulseGraph.__contains__

ImpulseGraph.__contains__(n)
Return True if n is a node, False otherwise. Use: ‘n in G’.

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_node(2)
>>> 2 in G
True

dynetworkx.ImpulseGraph.__str__

ImpulseGraph.__str__()
Return the interval graph name.

Returns name – The name of the interval graph.

Return type string

Examples

>>> G = dnx.IntervalGraph(name='foo')
>>> str(G)
'foo'

dynetworkx.ImpulseGraph.interval

ImpulseGraph.interval()

Return a 2-tuple as (begin, end) interval of the entire impulse graph.

5.4. Reference 47

DyNetworkX Documentation, Release 0.1

Examples

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 10), (3, 7, 16)])
>>> G.interval()
(10, 16)

Counting nodes and edges

ImpulseGraph.number_of_nodes([begin, end,
. . .])

Return the number of nodes in the impulse graph be-
tween the given interval.

ImpulseGraph.__len__() Return the number of nodes.

dynetworkx.ImpulseGraph.number_of_nodes

ImpulseGraph.number_of_nodes(begin=None, end=None, inclusive=(True, True))
Return the number of nodes in the impulse graph between the given interval.

Parameters

• begin (int or float, optional (default= beginning of the
entire impulse graph)) –

• end (int or float, optional (default= end of the entire
impulse graph)) – Must be bigger than or equal begin.

• inclusive (2-tuple boolean that determines inclusivity of
begin and end) –

Returns nnodes – The number of nodes in the impulse graph.

Return type int

See also:

__len__()

Examples

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 5), (3, 4, 11)])
>>> len(G)
4
>>> G.number_of_nodes()
4
>>> G.number_of_nodes(begin=6)
2
>>> G.number_of_nodes(begin=5, end=8)
2
>>> G.number_of_nodes(end=11)
4

48 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

dynetworkx.ImpulseGraph.__len__

ImpulseGraph.__len__()
Return the number of nodes. Use: ‘len(G)’.

Returns nnodes – The number of nodes in the graph.

Return type int

Examples

>>> G = dnx.IntervalGraph()
>>> G.add_nodes_from([2, 4, 5])
>>> len(G)
3

Making copies and subgraphs

ImpulseGraph.to_subgraph(begin, end[, . . .]) Return a networkx Graph or MultiGraph which includes
all the nodes and edges which have timestamps within
the given interval.

ImpulseGraph.to_snapshots(number_of_snapshots)Return a list of networkx Graph or MultiGraph objects
as snapshots of the impulse graph in consecutive order.

dynetworkx.ImpulseGraph.to_subgraph

ImpulseGraph.to_subgraph(begin, end, inclusive=(True, True), multigraph=False, edge_data=False,
edge_timestamp_data=False, node_data=False)

Return a networkx Graph or MultiGraph which includes all the nodes and edges which have timestamps within
the given interval.

Parameters

• begin (int or float) –

• end (int or float) – Must be bigger than or equal to begin.

• inclusive (2-tuple boolean that determines inclusivity of
begin and end) –

• multigraph (bool, optional (default= False)) – If True, a networkx
MultiGraph will be returned. If False, networkx Graph.

• edge_data (bool, optional (default= False)) – If True, edges will keep
their attributes.

• edge_timestamp_data (bool, optional (default= False)) – If True,
each edge’s attribute will also include its timestamp data. If edge_data= True and there
already exist edge attributes named timestamp it will be overwritten.

• node_data (bool, optional (default= False)) – if True, each node’s at-
tributes will be included.

See also:

to_snapshots() divide the impulse graph to snapshots

5.4. Reference 49

DyNetworkX Documentation, Release 0.1

Notes

If multigraph= False, and edge_data=True or edge_interval_data=True, in case there are multiple edges, only
one will show with one of the edge’s attributes.

Note: nodes with no edges will not appear in any subgraph.

Examples

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 10), (2, 4, 11), (6, 4, 19), (2, 4, 15)])
>>> H = G.to_subgraph(4, 12)
>>> type(H)
<class 'networkx.classes.graph.Graph'>
>>> list(H.edges(data=True))
[(1, 2, {}), (2, 4, {})]

>>> H = G.to_subgraph(10, 12, edge_timestamp_data=True)
>>> type(H)
<class 'networkx.classes.graph.Graph'>
>>> list(H.edges(data=True))
[(1, 2, {'timestamp': 10}), (2, 4, {'timestamp': 11})]

>>> M = G.to_subgraph(4, 12, multigraph=True, edge_timestamp_data=True)
>>> type(M)
<class 'networkx.classes.multigraph.MultiGraph'>
>>> list(M.edges(data=True))
[(1, 2, {'timestamp': 10}), (2, 4, {'timestamp': 11})]

dynetworkx.ImpulseGraph.to_snapshots

ImpulseGraph.to_snapshots(number_of_snapshots, multigraph=False, edge_data=False,
edge_timestamp_data=False, node_data=False, return_length=False)

Return a list of networkx Graph or MultiGraph objects as snapshots of the impulse graph in consecutive order.

Parameters

• number_of_snapshots (integer) – Number of snapshots to divide the interval graph
into. Must be bigger than 1.

• multigraph (bool, optional (default= False)) – If True, a networkx
MultiGraph will be returned. If False, networkx Graph.

• edge_data (bool, optional (default= False)) – If True, edges will keep
their attributes.

• edge_timestamp_data (bool, optional (default= False)) – If True,
each edge’s attribute will also include its timestamp data. If edge_data= True and there
already exist edge attributes named timestamp it will be overwritten.

• node_data (bool, optional (default= False)) – if True, each node’s at-
tributes will be included.

• return_length (bool, optional (default= False)) – If true, the length of
snapshots will be returned as the second argument.

See also:

50 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

to_subgraph() subgraph based on an interval

Notes

In order to create snapshots, timestamp of edges of the impulse graph must be numbers.

If multigraph= False, and edge_data=True or edge_timestamp_data=True, in case there are multiple edges, only
one will show with one of the edge’s attributes.

Examples

Snapshots of NetworkX Graph

>>> G = dnx.ImpulseGraph()
>>> G.add_edges_from([(1, 2, 10), (2, 4, 11), (6, 4, 19), (2, 4, 15)])
>>> S, l = G.to_snapshots(2, edge_timestamp_data=True, return_length=True)
>>> S
[<networkx.classes.graph.Graph object at 0x100000>, <networkx.classes.graph.Graph
→˓object at 0x150d00>]
>>> l
4.5
>>> for g in S:
>>> ... g.edges(data=True))
[(1, 2, {'timestamp': 10}), (2, 4, {'timestamp': 11})]
[(2, 4, {'timestamp': 15}), (4, 6, {'timestamp': 19})]

Snapshots of NetworkX MultiGraph

>>> S, l = G.to_snapshots(3, multigraph=True, edge_timestamp_data=True, return_
→˓length=True)
>>> S
[<networkx.classes.multigraph.MultiGraph object at 0x1060d40b8>, <networkx.
→˓classes.multigraph.MultiGraph object at 0x151020c9e8>, <networkx.classes.
→˓multigraph.MultiGraph object at 0x151021d390>]
>>> l
3.0
>>> for g in S:
>>> ... g.edges(data=True))
[(1, 2, {'timestamp': 10}), (2, 4, {'timestamp': 11})]
[(2, 4, {'timestamp': 15})]
[(6, 4, {'timestamp': 19})]

Loading an impulse graph

ImpulseGraph.load_from_txt(path[, . . .]) Read impulse graph in from path.
ImpulseGraph.save_to_txt(path[, delimiter]) Write impulse graph to path.

dynetworkx.ImpulseGraph.load_from_txt

static ImpulseGraph.load_from_txt(path, delimiter=’ ’, nodetype=None, timestamptype=<class
’float’>, comments=’#’)

Read impulse graph in from path. Every line in the file must be an edge in the following format: “node node

5.4. Reference 51

DyNetworkX Documentation, Release 0.1

timestamp”. Timestamps must be integers or floats. Nodes can be any hashable objects.

Parameters

• path (string or file) – Filename to read.

• nodetype (Python type, optional) – Convert nodes to this type.

• timestamptype (Python type, optional (default= float)) –

• timestamp to this type. (Convert) –

• must be an orderable type, ideally int or float. Other
orderable types have not been fully tested. (This) –

• comments (string, optional) – Marker for comment lines

• delimiter (string, optional) – Separator for node labels. The default is whites-
pace. Cannot be =.

Returns G – The graph corresponding to the lines in edge list.

Return type ImpulseGraph

Examples

>>> G=dnx.ImpulseGraph.load_from_txt("my_dygraph.txt")

The optional nodetype is a function to convert node strings to nodetype.

For example

>>> G=dnx.ImpulseGraph.load_from_txt("my_dygraph.txt", nodetype=int)

will attempt to convert all nodes to integer type.

Since nodes must be hashable, the function nodetype must return hashable types (e.g. int, float, str, frozenset -
or tuples of those, etc.)

dynetworkx.ImpulseGraph.save_to_txt

ImpulseGraph.save_to_txt(path, delimiter=’ ’)

Write impulse graph to path. Every line in the file must be an edge in the following format: “node node
timestamp”. Timestamps must be integers or floats. Nodes can be any hashable objects.

Parameters

• path (string or file) – Filename to read.

• delimiter (string, optional) – Separator for node labels. The default is whites-
pace. Cannot be =.

Examples

>>> G.save_to_txt("my_dygraph.txt")

52 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

Analyzing impulse graphs

ImpulseGraph.degree([node, begin, end, delta]) Return the degree of a specified node between time be-
gin and end.

dynetworkx.ImpulseGraph.degree

ImpulseGraph.degree(node=None, begin=None, end=None, delta=False)
Return the degree of a specified node between time begin and end.

Parameters

• node (Nodes can be, for example, strings or numbers.) – Nodes must
be hashable (and not None) Python objects.

• begin (int or float, optional (default= beginning of the
entire impulse graph)) – Inclusive beginning time of the edge appearing in
the impulse graph.

• end (int or float, optional (default= end of the entire
impulse graph)) – Non-inclusive ending time of the edge appearing in the im-
pulse graph.

Returns

Return type Integer value of degree of specified node.

Examples

>>> G = ImpulseGraph()
>>> G.add_edge(1, 2, 3)
>>> G.add_edge(2, 3, 8)
>>> G.degree(2)
2
>>> G.degree(2,2)
2
>>> G.degree(2,end=8)
1
>>> G.mean_degree()
1.33333
>>> G.degree(2,delta=True)
[(8, 1), (3, 1)]

Snapshot Graph

Overview

class dynetworkx.SnapshotGraph(**attr)

Methods

5.4. Reference 53

DyNetworkX Documentation, Release 0.1

Adding and removing nodes and edges

SnapshotGraph.__init__(**attr) Initialize self.
SnapshotGraph.add_nodes_from(nbunch[,
sbunch])

Adds nodes to snapshots in sbunch.

SnapshotGraph.add_edges_from(ebunch[,
sbunch])

Adds edges to snapshots in sbunch.

dynetworkx.SnapshotGraph.__init__

SnapshotGraph.__init__(**attr)
Initialize self. See help(type(self)) for accurate signature.

dynetworkx.SnapshotGraph.add_nodes_from

SnapshotGraph.add_nodes_from(nbunch, sbunch=None, **attrs)
Adds nodes to snapshots in sbunch.

Parameters

• nbunch (container of nodes) – Each node in the nbunch list will be added to all
graphs indexed in sbunch.

• sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of node
degrees. It is highly recommended that this list is sequential, however it can be out of order.

Returns

Return type None

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])

>>> G.add_nodes_from([5, 6, 7], [0])
>>> G.add_nodes_from([8, 9, 10, 11], [1])
>>> nx.adjacency_matrix(G.get()[0]).todense()
[[0 1 1 0 0 0]
[1 0 0 0 0 0]
[1 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]
[0 0 0 0 0 0]]
>>> nx.adjacency_matrix(G.get()[1]).todense()
[[0 1 1 0 0 0 0]
[1 0 0 0 0 0 0]
[1 0 0 0 0 0 0]
[0 0 0 0 0 0 0]
[0 0 0 0 0 0 0]
[0 0 0 0 0 0 0]
[0 0 0 0 0 0 0]]

54 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

dynetworkx.SnapshotGraph.add_edges_from

SnapshotGraph.add_edges_from(ebunch, sbunch=None, **attrs)
Adds edges to snapshots in sbunch.

Parameters

• ebunch (container of edges) – Each edge in the ebunch list will be added to all
graphs indexed in sbunch.

• sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of node
degrees. It is highly recommended that this list is sequential, however it can be out of order.

Returns

Return type None

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])

>>> G.add_edges_from([(5, 6), (7, 6)], [0])
>>> G.add_edges_from([(8, 9), (10, 11)], [0, 1])
>>> nx.adjacency_matrix(G.get()[0]).todense()
[[0 1 1 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0]
[1 0 0 0 0 0 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0]
[0 0 0 1 0 1 0 0 0 0]
[0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 0 0 1 0 0]
[0 0 0 0 0 0 1 0 0 0]
[0 0 0 0 0 0 0 0 0 1]
[0 0 0 0 0 0 0 0 1 0]]
>>> nx.adjacency_matrix(G.get()[1]).todense()
[[0 1 1 0 0 0 0]
[1 0 0 0 0 0 0]
[1 0 0 0 0 0 0]
[0 0 0 0 1 0 0]
[0 0 0 1 0 0 0]
[0 0 0 0 0 0 1]
[0 0 0 0 0 1 0]]

Manipulating Snapshots

SnapshotGraph.insert(graph[, snap_len, . . .]) Insert a graph into the snapshot graph, with options for
inserting at a given index, with some snapshot length.

SnapshotGraph.add_snapshot([ebunch, graph,
. . .])

Add a snapshot with a bunch of edge values.

5.4. Reference 55

DyNetworkX Documentation, Release 0.1

dynetworkx.SnapshotGraph.insert

SnapshotGraph.insert(graph, snap_len=None, num_in_seq=None)
Insert a graph into the snapshot graph, with options for inserting at a given index, with some snapshot length.

Parameters

• graph (networkx graph object) – A networkx graph to be inserted into snapshot
graph.

• snap_len (integer, optional (default= None)) – Length of the snapshot.

• num_in_seq (integer, optional (default= None)) – Time slot to begin in-
sertion at.

Returns

Return type None

Examples

>>> nxG1 = nx.Graph()
>>> nxG1.add_edges_from([(1, 2), (1, 3)])
>>> G = dnx.SnapshotGraph()
>>> G.insert(nxG1, 0)

dynetworkx.SnapshotGraph.add_snapshot

SnapshotGraph.add_snapshot(ebunch=None, graph=None, num_in_seq=None)
Add a snapshot with a bunch of edge values.

Parameters

• ebunch (container of edges, optional (default= None)) – Each edge
in the ebunch list will be included to all added graphs.

• graph (networkx graph object, optional (default= None)) – net-
workx graph to be inserted into snapshot graph.

• num_in_seq (integer, optional (default= None)) – Time slot to begin in-
sertion at.

Returns

Return type None

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 4), (1, 3)])

Reporting Snapshots

56 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

SnapshotGraph.__len__() Return the number of snapshots.
SnapshotGraph.order([sbunch]) Returns order of each graph requested in ‘sbunch’.
SnapshotGraph.has_node(n[, sbunch]) Gets boolean list of if a snapshot in ‘sbunch’ contains

node ‘n’.
SnapshotGraph.size([sbunch, weight]) Returns the size of each graph index as specified in

sbunch as a list.
SnapshotGraph.is_directed([sbunch]) Returns a list of boolean values for if the graph at the

index is a directed graph.
SnapshotGraph.is_multigraph([sbunch]) Returns a list of boolean values for if the graph at the

index is a multigraph.
SnapshotGraph.number_of_nodes([sbunch]) Gets number of nodes in each snapshot requested in

‘sbunch’.
SnapshotGraph.degree([sbunch, nbunch,
weight])

Return a list of tuples containing the degrees of each
node in each snapshot

dynetworkx.SnapshotGraph.__len__

SnapshotGraph.__len__()
Return the number of snapshots. Use: ‘len(G)’.

Returns num_snapshots – The number of snapshots in the graph.

Return type int

Examples

>>> nxG1 = nx.Graph()
>>> nxG2 = nx.Graph()
>>>
>>> nxG1.add_edges_from([(1, 2), (1, 3)])
>>> nxG2.add_edges_from([(1, 4), (1, 3)])
>>>
>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot(graph=nxG1)
>>> G.add_snapshot(graph=nxG2)
>>> len(G)
2

dynetworkx.SnapshotGraph.order

SnapshotGraph.order(sbunch=None)
Returns order of each graph requested in ‘sbunch’.

Parameters sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of node orders. It
is highly recommended that this list is sequential, however it can be out of order.

Returns snapshot_orders – A list of the orders of each snapshot.

Return type list

5.4. Reference 57

DyNetworkX Documentation, Release 0.1

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.order(sbunch=[1])
[3]
>>> G.order(sbunch=[0, 1])
[3, 3]

dynetworkx.SnapshotGraph.has_node

SnapshotGraph.has_node(n, sbunch=None)
Gets boolean list of if a snapshot in ‘sbunch’ contains node ‘n’.

Parameters

• n (node) – Node to be checked for in requested snapshots.

• sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of if the
snapshot graph includes the node. It is highly recommended that this list is sequential,
however it can be out of order.

Returns

Return type List of boolean values if index in sbunch contains n.

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.has_node(1, sbunch=[1])
[True]
>>> G.has_node(1)
[True, True]

dynetworkx.SnapshotGraph.size

SnapshotGraph.size(sbunch=None, weight=None)
Returns the size of each graph index as specified in sbunch as a list.

Parameters

• sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of sizes. It is
highly recommended that this list is sequential, however it can be out of order.

• weight (string, optional (default=None)) – The edge attribute that holds
the numerical value used as a weight. If None, then each edge has weight 1.

Returns size_list – List of sizes of each graph indexed in sbunch.

Return type list

58 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.size(sbunch=[0, 1])
[2, 2]
>>> G.size()
[2, 2]

dynetworkx.SnapshotGraph.is_directed

SnapshotGraph.is_directed(sbunch=None)
Returns a list of boolean values for if the graph at the index is a directed graph.

Parameters sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of booleans. It is
highly recommended that this list is sequential, however it can be out of order.

Returns is_direct_list – List of boolean values if index in sbunch is a directed graph.

Return type list

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.is_directed(sbunch=[0, 1])
[False, False]
>>> G.is_directed()
[False, False]

dynetworkx.SnapshotGraph.is_multigraph

SnapshotGraph.is_multigraph(sbunch=None)
Returns a list of boolean values for if the graph at the index is a multigraph.

Parameters sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of booleans. It is
highly recommended that this list is sequential, however it can be out of order.

Returns mutli_list – List of boolean values if index in sbunch is a multigraph.

Return type list

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.is_multigraph(sbunch=[0, 1])

(continues on next page)

5.4. Reference 59

DyNetworkX Documentation, Release 0.1

(continued from previous page)

[False, False]
>>> G.is_multigraph()
[False, False]

dynetworkx.SnapshotGraph.number_of_nodes

SnapshotGraph.number_of_nodes(sbunch=None)
Gets number of nodes in each snapshot requested in ‘sbunch’.

Parameters sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of number of
nodes in the snapshot. It is highly recommended that this list is sequential, however it can be
out of order.

Returns num_nodes – A list of of the number of nodes in each requested snapshot.

Return type list

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.number_of_nodes(sbunch=[1])
[3]
>>> G.number_of_nodes(sbunch=[0, 1])
[3, 3]

dynetworkx.SnapshotGraph.degree

SnapshotGraph.degree(sbunch=None, nbunch=None, weight=None)
Return a list of tuples containing the degrees of each node in each snapshot

Parameters

• sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of node
degrees. It is highly recommended that this list is sequential, however it can be out of order.

• nbunch (container of nodes, optional (default= None)) – Each node
in the nbunch list will be included in the returned list of node degrees.

• weight (string, optional (default= None)) – The edge attribute that holds
the numerical value used as a weight. If None, then each edge has weight 1. The degree is
the sum of the edge weights adjacent to the node.

Returns degree_list – List of DegreeView objects containing the degree of each node, indexed by
requested snapshot.

Return type list

60 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.degree(sbunch=[1])
[DegreeView({1: 2, 4: 1, 3: 1})]
>>> G.degree(nbunch=[1, 2])
[DegreeView({1: 2, 2: 1}), DegreeView({1: 2})]

Making copies and subgraphs

SnapshotGraph.subgraph(nbunch[, sbunch]) Return a snapshot graph containing only the nodes in
bunch, and snapshot indexes in sbunch.

SnapshotGraph.to_directed([sbunch]) Returns a list of networkx directed graph objects.
SnapshotGraph.to_undirected([sbunch]) Returns a list of networkx graph objects.

dynetworkx.SnapshotGraph.subgraph

SnapshotGraph.subgraph(nbunch, sbunch=None)
Return a snapshot graph containing only the nodes in bunch, and snapshot indexes in sbunch.

Parameters

• nbunch (container of nodes) – Each node in the nbunch list will be included in all
subgraphs indexed in sbunch.

• sbunch (container of edges, optional (default= None)) – Each snap-
shot index in this list will be included in the returned list of subgraphs. It is highly recom-
mended that this list is sequential, however it can be out of order.

Returns snap_graph – Contains only the nodes in bunch, and snapshot indexes in sbunch.

Return type SnapshotGraph object

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (2, 3), (4, 6), (2, 4)])
>>> G.add_snapshot([(1, 2), (2, 3), (4, 6), (2, 4)])
>>> H = G.subgraph([4, 6])
>>> type(H)
<class 'snapshotgraph.SnapshotGraph'>
>>> list(H.get([0])[0].edges(data=True))
[(4, 6, {})]

dynetworkx.SnapshotGraph.to_directed

SnapshotGraph.to_directed(sbunch=None)
Returns a list of networkx directed graph objects.

5.4. Reference 61

DyNetworkX Documentation, Release 0.1

Parameters sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of directed graphs.
It is highly recommended that this list is sequential, however it can be out of order.

Returns direct_list – List of networkx directed graph objects.

Return type list

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.to_directed(sbunch=[0, 1])
[<networkx.classes.digraph.DiGraph object at 0x7f1a6de49dd8>, <networkx.classes.
→˓digraph.DiGraph object at 0x7f1a6de49e10>]

dynetworkx.SnapshotGraph.to_undirected

SnapshotGraph.to_undirected(sbunch=None)
Returns a list of networkx graph objects.

Parameters sbunch (container of snapshot indexes, optional (default=
None)) – Each snapshot index in this list will be included in the returned list of undirected
graphs. It is highly recommended that this list is sequential, however it can be out of order.

Returns undirect_list – List of networkx graph objects.

Return type list

Examples

>>> G = dnx.SnapshotGraph()
>>> G.add_snapshot([(1, 2), (1, 3)])
>>> G.add_snapshot([(1, 4), (1, 3)])
>>> G.to_directed(sbunch=[0, 1])
[<networkx.classes.graph.Graph object at 0x7ff532219e10>, <networkx.classes.graph.
→˓Graph object at 0x7ff532219e48>]

5.5 Developer Guide

DyNetworkX is still under development and the repository is kept private. If you are interested in getting access to the
project as a developer, go to Need Help? for contact information.

5.6 License

BSD 3-Clause License

Copyright (c) 2018, IDEAS Lab @ The University of Toledo.

All rights reserved.

62 Chapter 5. Documentation

DyNetworkX Documentation, Release 0.1

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

5.7 Need Help?

If you have any trouble with DyNetworkX, please email Makan.Arastuie@rockets.utoledo.edu

5.7. Need Help? 63

mailto:Makan.Arastuie@rockets.utoledo.edu

DyNetworkX Documentation, Release 0.1

64 Chapter 5. Documentation

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

65

DyNetworkX Documentation, Release 0.1

66 Chapter 6. Indices and tables

Index

Symbols
__contains__() (dynetworkx.ImpulseGraph

method), 47
__contains__() (dynetworkx.IntervalGraph

method), 29
__init__() (dynetworkx.ImpulseGraph method), 38
__init__() (dynetworkx.IntervalGraph method), 20
__init__() (dynetworkx.SnapshotGraph method), 54
__len__() (dynetworkx.ImpulseGraph method), 49
__len__() (dynetworkx.IntervalGraph method), 31
__len__() (dynetworkx.SnapshotGraph method), 57
__str__() (dynetworkx.ImpulseGraph method), 47
__str__() (dynetworkx.IntervalGraph method), 30

A
add_edge() (dynetworkx.ImpulseGraph method), 41
add_edge() (dynetworkx.IntervalGraph method), 22
add_edges_from() (dynetworkx.ImpulseGraph

method), 41
add_edges_from() (dynetworkx.IntervalGraph

method), 23
add_edges_from() (dynetworkx.SnapshotGraph

method), 55
add_node() (dynetworkx.ImpulseGraph method), 38
add_node() (dynetworkx.IntervalGraph method), 20
add_nodes_from() (dynetworkx.ImpulseGraph

method), 39
add_nodes_from() (dynetworkx.IntervalGraph

method), 21
add_nodes_from() (dynetworkx.SnapshotGraph

method), 54
add_snapshot() (dynetworkx.SnapshotGraph

method), 56

D
degree() (dynetworkx.ImpulseGraph method), 53
degree() (dynetworkx.IntervalGraph method), 35
degree() (dynetworkx.SnapshotGraph method), 60

E
edges() (dynetworkx.ImpulseGraph method), 45
edges() (dynetworkx.IntervalGraph method), 27

H
has_edge() (dynetworkx.ImpulseGraph method), 46
has_edge() (dynetworkx.IntervalGraph method), 29
has_node() (dynetworkx.ImpulseGraph method), 44
has_node() (dynetworkx.IntervalGraph method), 26
has_node() (dynetworkx.SnapshotGraph method), 58

I
ImpulseGraph (class in dynetworkx), 36
insert() (dynetworkx.SnapshotGraph method), 56
interval() (dynetworkx.ImpulseGraph method), 47
interval() (dynetworkx.IntervalGraph method), 30
IntervalGraph (class in dynetworkx), 18
is_directed() (dynetworkx.SnapshotGraph

method), 59
is_multigraph() (dynetworkx.SnapshotGraph

method), 59

L
load_from_txt() (dynetworkx.ImpulseGraph static

method), 51
load_from_txt() (dynetworkx.IntervalGraph static

method), 34

N
nodes() (dynetworkx.ImpulseGraph method), 43
nodes() (dynetworkx.IntervalGraph method), 25
number_of_nodes() (dynetworkx.ImpulseGraph

method), 48
number_of_nodes() (dynetworkx.IntervalGraph

method), 30
number_of_nodes() (dynetworkx.SnapshotGraph

method), 60

O
order() (dynetworkx.SnapshotGraph method), 57

67

DyNetworkX Documentation, Release 0.1

R
remove_edge() (dynetworkx.ImpulseGraph method),

42
remove_edge() (dynetworkx.IntervalGraph method),

24
remove_node() (dynetworkx.ImpulseGraph method),

40
remove_node() (dynetworkx.IntervalGraph method),

22

S
save_to_txt() (dynetworkx.ImpulseGraph method),

52
save_to_txt() (dynetworkx.IntervalGraph method),

35
size() (dynetworkx.SnapshotGraph method), 58
SnapshotGraph (class in dynetworkx), 53
subgraph() (dynetworkx.SnapshotGraph method), 61

T
to_directed() (dynetworkx.SnapshotGraph

method), 61
to_snapshots() (dynetworkx.ImpulseGraph

method), 50
to_snapshots() (dynetworkx.IntervalGraph

method), 33
to_subgraph() (dynetworkx.ImpulseGraph method),

49
to_subgraph() (dynetworkx.IntervalGraph method),

32
to_undirected() (dynetworkx.SnapshotGraph

method), 62

68 Index

	Audience
	Python
	Free software
	History
	Documentation
	Install
	Tutorial
	Download
	Reference
	Developer Guide
	License
	Need Help?

	Indices and tables
	Index

